Factorizando polinomios de tercer grado

En la conceptualización de las expresiones algebraicas, observamos que los polinomios son las funciones que poseen tres o más términos sumados. Estos pueden ser representados de forma gráfica y algebraica. Los polinomios de tercer grado, son conocidos también como ecuación cúbica o ecuaciones de tercer grado. Su expresión general tiene la forma:

ax³ + bx² + cx + d = 0

Donde a, b, c y d son números enteros, x la variable incógnita de la ecuación. Encontrando su valor, hallaremos las soluciones posibles a dicha ecuación o las raíces del polinomio. Recordemos que la factorización consiste en transformar una expresión algebraica, a una expresión de multiplicación de términos.

A continuación resolveremos polinomios de tercer grado, por el método de factorización.

Ejemplo 1: Hallar el conjunto de soluciones de la siguiente ecuación cúbica  x³ – 8x² + x – 8 = 0.

Para resolverlo usaremos la factorización:

x²(x – 8) + (x – 8) = 0

Obtenemos el factor común (x – 8) :

(x – 8)(x² + 1) = 0

Observemos la expresión, para que pueda cumplirse tal igualdad, (x – 8 = 0) o (x² + 1 = 0). Veamos cada una por separado:

x – 8 = 0

x = 8

Entonces uno de los valores solución a esta ecuación es x = 8. Veamos la siguiente expresión:

x² + 1 = 0

x² = – 1

Recordemos que la raíz de un número negativo es un número imaginario (√-1 = i).

x = ± √-1

Tenemos dos soluciones:

x1 = i

x2 = -i

Entonces las raíces solución a esta ecuación son:

{8, -i, i}

{8} Solución en los números reales, {i, -i} para los números imaginarios.

Comprobaremos la solución para los números reales: Sustituimos x = 8 en la expresión inicial del ejercicio x³ – 8x² + x – 8 = 0:

(8)³ – 8(8)² + 8 – 8 = 0

Recordemos la propiedad de potencia na×nb=n(a+b).

(8)³ – (8)³ + 0 = 0

0 + 0 = 0

0 = 0

Esta igualdad es cierta, por lo tanto x = 8 es solución a la ecuación de tercer grado en los números reales. Representación gráfica del polinomio:

factorizando polinomios  Factorizando polinomios de tercer grado factorizando polinomios e1460386076554

Ejemplo 2: Hallar las soluciones de la siguiente ecuación cúbica x³  – 8 = 0.

Para hallar las raíces de este polinomio debemos recordar cómo resolver el producto notable de la diferencias de términos al cubo:

a³ – b³ = (a – b)(a² + ab + b²)

Podemos reescribir la ecuación:

x³  – 8 = 0

x³ – 2³ = 0

(x – 2)(x² + 2x + 4) = 0

Para que se cumpla esta igualdad, (x – 2 = 0) o (x² + 2x + 4 = 0); veamos las ecuaciones por separado, primero:

x – 2 = 0

x = 2

Una solución a esta ecuación cúbica es x = 2.

Segunda ecuación:

x² + 2x + 4 = 0

Como no podemos factorizarla, usaremos la resolvente x = [- b ± √(b² – 4ac)] / 2a. Donde a = 1, b = 2 y c = 4 sustituimos estos valores en la resolvente y tenemos:

x = [- 2 ± √(2² – 4·1·4)] / (2·1)

x = [- 2 ± √(-12)] / 2

x = [- 2 ± i √(3·4)] / 2

x = (- 2 ± i 2√3) / 2

x = – 1 ± i √3

Entonces las raíces solución a esta ecuación son:

{2 ; -1 + i √3; -1 – i √3}

{2} es la solución en los números reales y {-1 + i √3; -1 – i √3} para los números imaginarios.

Comprobaremos la solución para los números reales:

Sustituimos x = 2 en la expresión inicial del ejercicio x³  – 8 = 0:

(2)³  – 8 = 0

8 – 8 = 0

0 = 0

Esta igualdad es cierta por lo tanto x = 2 es solución a la ecuación de tercer grado en los números reales. El polinomio de manera gráfica:

factorizando polinomios2  Factorizando polinomios de tercer grado factorizando polinomios2 e1460386147126